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Abstract: The objective of this work is to establish the commutativity of
rings with unity 1 and one-sided s-unital rings under each of the following
properties: y'[z,y™]z® = zP[z",y]z? and 2%[z,y™|y" = 2P[z", y]z9, where
r > 0,5 > 0 and m > 1 are fixed integers and for each z in R there exist

integers n = n(z) > 0,p = p(z) > 0,s = s(z) > 0 and g = g(x) > 0 for every
y € R such that, R has the property Q(m), that is, m[z,y] = 0 implies that
[z,y] =0, for all z,y € R. Further, we provide some counterexamples which
show that the hypotheses of our theorems are not altogether superfluous.
Finally, many well-known commutativity theorems become corollaries of our
results.
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1. Introduction

Throughout, R will be an associative ring, Z(R) the center of R, C(R) the
commutator ideal of R, N(R) the set of all nilpotent elements of R, N’(R) the
set of all zero-divisors in R, [z,y] the commutator zy — yz of two elements
z and y in R,Z[X,Y] the ring of polynomials in two commuting indeter-
minates and Z < X,Y > the ring of polynomials in two non-commuting
indeterminates over the ring Z of integers. Following [2], a ring R is said
to be left (resp. right) s-unital, if z € Rz (resp., z € zR) for each element
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Theorem 2.2. Let R be a ring with unity 1 satisfying the property
(P1). If R has the property Q(m), then R is commutative.

We begin with the following known results.

Lemma 2.1. (see [3, p. 221]) If [z,y] commutes with =, then for any
positive integer k, [z*,y] = k=¥~ 1[z, y].

Lemma 2.2. (see [4, Theorem]) Let f be a polynomial in n non-

commuting indeterminates 1, x, ..., z, with relatively prime integral coef-
ficients. Then the following are equivalent:

(i) For any ring satisfying the polynomial identity f = 0, C(R) is a nil
ideal.

(ii) For every prime p, (GF(p))2 the ring of all 2x 2 matrices over GF(p),
fails to satisfy f = 0.

Lemma 2.3. (see [11, Hauptsatz]) Let R satisfy a polynomial identity
of the form [z,y] = p(x,y), where p(X,Y) in Z < X,Y > has the following
properties:

(a) p(X,Y) is in the kernel of the natural homomorphism from Z <
X,Y > to Z[X,Y);

(b) each monomial of p(X,Y) has total degree at least 3;

(c) each monomial of p(X,Y) has X -degree at least 2, or each monomial
of p(X,Y) has Y-degree at least 2.

Then R is commutative.
Lemma 2.4. (see [10, Lemma 4]) Let R be a ring with unity 1 and let
f : R — R be any polynomial function of two variables with the property
flz+ 1,y) = f(z,y), for all z,y in R. If for all z,y in R there exists a
positive integer n = n(z,y) such that z" f(z,y) = 0 (or f(z,y)z" = 0), then
necessarily f(z,y) = 0.
We shall prove the following results.
Result 2.1. Let R be a ring with 1 satisfying (P). Then C(R) C N(R).
Proof. Let R satisfy the property (P). We have
Ve y™e" = 2[a", ylat. (2.1)
Replacing y by y + 1 in (2.1), we get
v+ 1) [, (y + )™ = 2P[a", yla. (2:2)
Combining (2.1) and (2.2),we get
(v + 1)z, (y + )] =y [z,y™])2* = 0.
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An application of the property Q(m), we get
[z, =0
that is, a’~! € Z(R), which contradicts the minimality of ¢ in (2.4). Hence
t =1 and a € Z(R), give the required result. O
Result 2.4. Let R be a ring with unity 1 satisfying the property (P).
If R has the property Q(m), then N(R) C Z(R).
Proof. As in Result 2.1, similar arguments maybe used if R satisfies
(P1). a
Proof of Theorem 2.1. In view of Results 2.1 and 2.3, we get
C(R) C N(R) C Z(R). 27)
In view of (2.7), property (P) and by Lemma 2.1, we get
mz®[z, yly™ ! = nz, ylePrarmol, (2.8)
Replacing 1 + y for y in (2.8), we get
ma*z, y)(1 + y)™" 1 = nfa, ylartrrm-1, (2.9)
From (2.8) and (2.9), we get
ma® [z, yl{(1 + y)™" ! —y™+" 1} =0, for all 2,y € R.
Replacing 1 + z for , by using Lemma 2.4 and the property Q(m) in the
last equation, we get
[,y {A + )™ =y} =0, (2.10)
For m 4 r =2 in (2.10), we get the commutativity of R.

For m + r > 2, (2.10) implies that [z,y] = [z,y]f(y), for all z,y in R,
and for some polynomial f(Y) in Z[Y] all monomials of f have degree at
least one. Hence R is commutative by Lemma 2.3. O

Proof of Theorem 2.2. Using Results 2.2, 2.4 and similar arguments with
necessary variations in the proof of Theorem 2.1, we can get the required
result. O

Remark 2.3. The following example strengthens the existence of the
property @Q(m) in Theorems 2.1 and 2.2.

a B v
Example 2.1. Let R = !O o? 0] , where o, 8,7 € GF(4), the finite

0 0 «a
Galois field, be the set of all matrices. It is readily verified that R (with the
usual matrix addition and multiplication) is a non-commutative local ring
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such that a ring R has the property P if and only if all its finitely generated
subrings have P is called an F-property.

Lemma 3.1. (see [2, Proposition 1]) Suppose that P is an H-property,
and P' is an F-property. If every ring R with unity 1 having the property
P has the property P', then every s-unital ring having P has P'.

Remark 3.1. The results proved in the preceeding section can be au-
tomatically extended from a unital ring to s-unital rings by Lemma 3.1.

Indeed, we have

Theorem 3.1. Let R be a left (resp. right) s-unital ring satisfying the
property (P). Then R is commutative.

Theorem 3.2. Let R be a left (resp. right) s-unital ring satisfying the
property (P;). Then R is commutative.

Remark 3.2. As a consequence of Theorems 3.1 and 3.2, we get the
following corollary which includes [1, Theorems 1-4] and [7, Theorems 2 and
3] and [9, Theorem], [10, Theorem].

Corollary 3.1. Let m > 1,p,q,n, s and r be fixed non-negative integers
and R a left (resp. right) s-unital ring satisfying (P) or (P;). Then R is
commutative in each of the following cases:

(I) R has the property Q(m);

(I) n > 1 and m > 1 are relatively prime integers at s = 0.
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with unity 7, the identity matrix. Further, R satisfies
z® € Z(R) for all z € R. (2.11)

Now N'(R) consists of all matrices z in R with zero diagonal elements, and
thus, contains exactly 16 elements. For any z € N’(R), 2> = 0 and hence
7% = 0 € Z(R). The set R|N’(R) is a multiplicative group of order 48 and
hence z** = I € Z(R) for all z € R|N'(R). In view of (2.11), it follows
that R satisfies the properties (P) and (Py) for the same m and n and for
arbitrary non-negative integers p, g and r. This shows that the assumption
R has the property Q(m) in Theorems 2.1 and 2.2 cannot be eliminated.

Remark 2.4. The following result demonstrates that the conclusion
of Theorems 2.1 and 2.2 are still valid, at s = 0, if the property “Q(m)”
is replaced by the condition that “m and n are relatively prime positive
integers.”

Corollary 2.1. (see [7, Theorem 2]) Let m > 1 and r > 0 be fixed
integers and let R be a ring with unity 1 in which for every x € R there
exist integers n = n(z) > 1,p = p(z) > 0 and q = g(x) > 0 such that
m and n are relatively prime and R satisfies: y"[z,y™] = +aP[z", y]z? or
[z,y™]y" = xaP[z",y]z9. Then R is commutative.

Remark 2.5. The following example shows that R is not commutative
if “m and n are not relatively prime” in the hypothesis of above Corollary
211,

a b c
Example 2.2. Let R = { 0 a d]labecde GF(2)}. Then R is
0 0 a
a non-commutative ring with unity 1 satisfying y"[z, y*]z® = zP[z4, y]z? (or
28z, y*]y" = xP[z*, y]x9), for any non-negative integers p, q,r and s = 0.

3. Extension to One-Sided s-Unital Rings

Since there are non-commutative rings with R? being central, neither (P) nor
(Py) guarantees the commutativity of arbitrary rings. Before we go ahead
with our task, we pause to recall a few results in order to make our paper self
contained as possible. Clearly, in [2, Proposition 1], if P is a ring property
(i.e., P is inherited by every subring and every homomorphic image), then P
is called an h-property. More weakly, if P is inherited by every finitely gener-
ated subring and every natural homomorphic image modulo the annihilator
of a central element, then P is called an H-property. A ring property P
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By lemma 2.4, we get
Y+ 1)z, +1)"] =y [z,y™] (2.3)
for all z,y € R and some fixed integers r > 0,s > 0 and m > 1.

Equation (2.3) is a polynomial identity and we observe that z = €11 +€12
and y = €12 in (GF(p))2, p a prime, fail to satisfy the equality in (2.3). Hence
by Lemma 2.2, C(R) C N(R). O

Result 2.2. Let R be a ring satisfying (P;). Then C(R) C N(R).

Proof. If R satisfies the property (P;), then by using a similar technique
of replacing y by y+1, and together with Lemma 2.4, we find that R satisfies
the polynomial identity

[z, (y + )"y +1)" = [z,9™]y"
for all z,y € R, and some fixed integers r > 0,m > 1. But x = e;; and
y = ez in (GF(p))2,p a prime, fail to satisfy the above equality. Hence
Lemma 2.2 yields that C(R) C N(R). ]

Result 2.3. Let R be a ring with 1 satisfying the property (P). If R
has the property Q(m), then N(R) C Z(R).

Proof. Let R satisfy the property (P) and let a be an arbitrary element
in N(R). Then there exists an integer ¢t > 1 such that

a* € Z(R), for all integers k>t, ¢ minimal. (2.4)
Ift = 1, then a € Z(R), that is N(R) C Z(R). Suppose that ¢ > 1. Replacing
y by at~! in (P), we get
ar(t—l) [:c1 am{t—l)]xs — :Dp[:t",atul]xq.
In view of (2.4), and the fact that m(t — 1) > ¢, for integer m > 1, we get
2P[z",at2? = 0, for all z in R. (2.5)
Replacing y by 1 +a'~! in (P), we get
(14 a Y[z, (1 4+ o 1)M)z® = 2Pz, a9,
The last expression, together with Lemma 2.2, gives
(1 _'_at—l)r[x, (1 4 at—l)m] =0

for all z in R. Since (1 + a'~!) is invertible, the last equation implies that
[z,(1+a™ )™ =0 for all z in R. (2.6)
Combining (2.4) and (2.6), we get
0=[z,(1+a" )™ = [z,1 + ma'1] = m|z,a’].
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z € R. A ring R is called s-unital if it is both left as well as right s-unital,
that is, z € tRN Rz for each z € R.

There are several results in the existing literature [1, 5, 6, 9, 10] concern-
ing the commutativity of rings satisfying special cases of the following ring
properties:

(P) For each z in R, there exist integers n = n(z) > 0, p = p(z) > 0
s =s(x) >0 and g = g(x)> 0 such that

V'l " = 2", yla? (L1)
for all y in R, with fixed positive integers r and m.

(Py) For each z in R, there exist integers n = n(z) > 0, p = p(z) > 0

s = s(z) > 0 and g = g(z) > 0 such that
a®[z,y"]y" = 2P[2", Y2t (1.2)
for all y in R, with fixed positive integers r and m.

To establish the commutativity of a ring R satisfying anyone of the above
properties, we need the following condition.

Q(m) : For all z,y in R, m[z,y] = 0 implies [z, y] = 0, where m is some
integer. '

Recently, the Khan [6] has shown that a ring with unity 1 is commu-
tative if, for every z,y in R, R satisfies one of the polynomial identities
ztz™, yly" = +y®[y™, z] and z'[z,y™]y* = £[y™, z]y®, where m > 1,n > 1
and r,s,t are fixed non-negative integers with the property Q(n). In most
of the cases, the exponents in the above conditions have been considered
“global”. Up to now, some papers [5, 7, 8] on commutativity of rings have
published. The results when the exponents in the underlying conditions are
“local”, that is, they are dependent on the ring’s elements for their val-
ues. The aim of the present paper is to investigate commutativity of certain
rings satisfying (P) or (P;). In Section 2, we shall prove the commutativity
of rings satisfying the above properties. However, in Section 3, we extend
these results to the wider class of rings that are called one-sided s-unital.

2. Commutativity of Rings With Unity 1

Theorem 2.1. Let R be a ring with unity 1 satisfying the property (P).
If R has the property Q(m), then R is commutative.
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