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ABSTRACT

The remarks introduced by Salama and Quade (1990), based on the method
of weighted rankings introduced by Quade (1972, 1 979) has been reviwed. Some
lemmas proved so that the theorem introduced by Salama and Quade (1990) can
he generalized from the case of two treatments and n blocks to the case of m
treatments and n blocks. The case of three treatments and n blocks applied on an
exponential case is introduced as an example.

1. INTRODUCTION

The standard non-parametric procedures for testing the hypothesis of no
treatment effects in a complete blocks experiment depend entirely on the within-
block rankings. If block effect are assumed additive, however, then between-
block information may be recovered by weighting these rankings according their
credibility with respect to treatment ordering.

Let Xj; be the observation of the j-th of m treatments in the i-th of n
complete blocks, and consider the hypothesis of no treatments effects,
specifically,

LR %

Ho: Xj1, .... Xjm are interchangeable for each i.
Assume throughout:

(I) Independent blocks:

For i =1, ... n, the random vectors X; = (Xi1s . Xjm) (the blocks), are
mutually independent.
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(1Y) No Between-Block ties:

P!D;j=Dj} =0 fori=i’

This assures that there will be no ties in the ranking of the blocks. Let
0< b <. < by, with 0 # by, be a fixed set of block scores: and weight the i-th

block proportionally to b, .

Write (R;;. ... Rim) = R;. and consider PR =r|Q =k = P(R’ =r.0, =k)

P(Q, = k)
where P(Q, = k)= i
n
SoP(Ri=r|Qi=k)= nP(R, =r,D}' D < p"* ): nP(R =r, Dy-n<D, < D“,)
where D{-).-) is the j-th order statistic from a sample of (n-1) values of D, (that is,
all values except D;).

Theorem 1.1
Let g, ,, be the joint density function of Dyk- ) and D). Then

v h
PRi=r|Qi=k)=n[[P(R =r.a<D, <b)g, iufab)dadb (1.2)

i
The proof can be found in Salama and Quade (1990).

2. GENERALIZATION
Consider the follows two lemmas:

Lemma 2.1

Consider m random variables X}, X». ..., X, which we assume independent
with density functions fi(X) . 0 < x < x.i=1 ... m. Let Dy be as defined in

(1.1) and let Gry = PrD <1). For a sample of size n. let Lrk)(1) be the density
lunction of D) k = 1. .. n. Let fit) be monotone increasing (decreasing)
function. Then:

/, ?—j/'(f,lgu,(f)fﬂ | (2.1)
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o = [FOYa 0 = [FO M b RO o1

Since F(v) is monotone increasing, then

For0 <y < _v*: Wwe have Fry) < F(v*), or- Fry) > - F{v')‘

Fory* <y < 7. we have F(v) > Fiv*). Then

Lpsi~ IF VILIH-J(V L (V)]“F}+IF(VIL;+1(V) L (.")]d}
F(VILfn.r LA "J]‘i"’ I’F VHL (V) Lh;(”)}jv

Fy [ f L./ (V) £, 6v)lay- :I;[L& (»)- Lh.r(y)}".le
= O Nl 0)- 1yt

=)

Hence Iy is monorone increasing in k. The case is similar when f) is
monolone decreasing,

Lemma 2,2:

Consider m random variables AL XD
with density function JiX) 0<x< o, j= z' . m. Let Dy be as def‘ned mn(l.1)
and let G(1) = P(D <), For a sample of size n, I

et &rk)(1) be the density function
O Dggy. k=2, . n+1. Let J(t) be monotone increasing (decreasing) function.
Then:

Ym which we assume independent

l = ff(’)[&m )~ )0

(2.4)

18 also monotone increasing (decreasing) in k: that is

liv) =D >0k or By =P, 20Vk

—
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then: L(y) = 0 gives the roots 0, y;, . and /, such that 0 < ¥, <y, < land

/)
[L(v)dy =0:

1= [FOMOM [FONOK+ [FOX O
= PO ok FO3) 20 05 Lt
> F(0)] L(y)dy
=)

Since F(y) is monotone increasing. then :
For 0 <y <y, .wehave F(y)< F(v) or — F(y)> —F(v_;)
For y; < y <1: we have F(y)> F(la)

Hence Py is monotone increasing in k. The case is similar when f1) is
monolone increasing.

3. APPLICATION ON EXPONENTIAL DISTRIBUTION

Here, we will give an example on the exponential distribution for the case of
three treatments.

Lemma 3.1

Let gm(1) be the m-th order statistics corresponding to the p.d.f. g(1). Then

e a-slr )

Theorem 3.1

Let (X1). X201, X31) ws (X] 7. X2 7, N3/) o (XIne X2p. X3p) be the
observations corresponding to a design with three treatments and n blocks.
Assume that X . X2 and X3 are independent, with density functions

R T A L e e —
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L T P TR R

= —j’-f (e_i" et _ gl }Xg(m_;) ()- Sfmj(f))df
Then

na,

Pmir= 22T e )=+ e K 0)- g

T8 g 0)- g ()

From lemma (3.1) we have

o

;! Cad &) (1)t = E(X'{’ (n fﬂ))

:I: ™ Qa0 = E(X* (n—m+ 1))
I ™ Binenth = B (o =mr )
Then. |
Pm,i,1= f:—[ (ECC o))~ £ (x "fu-m)))+(E(X‘={,,_,,.+,))— E(X* 1))
- (gt .tn—w.l)- Bl t»—m))] =d(,_,, (33)

From lemma (2.2)
and for A; > Aj > Ak Pm,i,1 is monotone increasing in “m”

Hence P11 < Pé,i,[ S =Phi.
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L, (x,)z A,e'l"" if (x2)= ).ze"‘"'f and f, (x,)x J.Je"t‘"

respectively 0 <X, X2, X3 <.

Let Pm,iy= P{R(Xj) =¥ | R(Dj) = m}, where Dj = max Xx; - min xj. If A1 > A2
> A3, then {Pyy i, y} is monotone increasing in “m”; that is Py jy < P2 iy =< ..

Phiy - fory=1,2,3and i=1,2,3

We will give the proof fory=I1. A similar way can be followed for y =

and y =3
Proof:

we have
P, =PiR(x,)=10<D<1}= %{(2 ~e -e-*ﬂ)+ (e"("ﬁ“:” E ;)

So we can defined P'j | and P"'j | tO be

Pi= P{R(xj)= 1,11 = D<ty) =

b - o )

’)-ed(j"”")r’}}

-

P"i.!=P{R(x0=f,!$D<uo}:%'{(e_"" +e ™

form =2, ..., n, we have
Pm.i.1 =P {R(xj)=1|R(Dj)= m}

=n J_ f P{R(x,} = ], 5] _‘(Df( {2} g(m_f' m)(!]’ fz)d”dfz

[ ]

Where, g(m-1, m)(t1: tp) is the joint density function of D(n-1) and D(p)

P,il= % T (e'l"’ 4o ue—‘l‘”' d )g(md” (r,)dr,.

f

<

2
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Proof:
P, = ‘;J 0l gu Ok
:Oi f(,{ﬁ_:_{:_(f;___—"[('(f r‘ "g(rl]—(}(f)}'—k
GOF - G01 }

y = G(1) then dy = g( di.
/ (y) are monolone

(k- 2)f(n k+1)

Let f(1) be a monotone increasing function. Let
= (-1(y). Note that both y and G~

[0.0) = [0.1) and /
increasing functions. Now:

B :3].(04(")){@%)7 - I
[;_ }. k+.‘]

jIF(vILJ.(‘) L, ;(1)}3'1

i
11y)) is also a monotone increasing function and Lg(V) is

Where Frv) = f(G”
defined as in (2.2). Now

Py = JFONL ()= L)y

and

R A R

Therefore:
!
i~ ry :J F(_"'[th(."')_ 2L, (_")" L, ;(_\-')]ufv

Note that if
Liv) = Lg+10v) - 2Ly - Lg-113-
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a2

i also monotone increasing (decreasing) in k, that is

I, -1,>0vk or l,.,—1, <0vk.

Proof:

b= [ mpN= 1"'(’)(1; . ;1::(,7 _;,):[G(’)r"z(!)[! 0

I

l.et f{1) be a monotone increasing function. Let y = G(1) then dy = g(1) dt.

J0.) = [0.1) and 1 = G-1(y). Note that both y and G-I(y) are monotone

increasing functions. Now;

e (.V))U[—_Wj_—:ﬁ,—_k—),.v“g(f)[f -yl tay= :[F ()L (v )y

[}

Where F(v) =_/i’(:'" (v)) is also a monotone increasing function and

n,’ k-1 -k
15 = /- . 2.2
L, (V) (k ~ l)’(ﬂ' - k)" ¥ [ .VI (2.2)
Note that
- ”r ¢ k-1 1=k
L(vMdy=+——7 1=y| dy
J ((vdy = (k_‘,)_,(”_k),g.v [1- " dy
(2.3)

=mﬁ(k.n-k+f)=1

Also; Lg(0) = Li(1) = 0. Lk is unimodel and 3 a y* such thta 0 < y* < I with

I,kr_v*) =Lk+ ;(v").

Now

I, = JFO)L My = I FOL (K = [FOL Ok

and
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(11) No within-blocks ties:
P(Xjj = Xjj) = 0 forj#’

The alternative under consideration can be fairly general, however, there
may be additive treatment effects. as follows:

Unordered case:

Hi(u): There exist quantities Tf, .... Tm (treatment effects) not all equal to
sero. such that for i = 1, ... n. Xj| - 11+ ..s Xjm - Tm are interchangeable.

Ordered case:

H(0): The quantities T|, ... Tm (treatment effects) satisfy 1] S 12 <. = Tm
witht) # -

(111) Additive block effects:

There exist quantities By, ... Bn (block effects) such that the random vectors
(Xi1 - Bis s Xim - By) are identically distributed.

By assumption 111, com parisons of observations are possible between blocks
as well as within, so procedures which use only within-block comparison waste
information. A method of weighted within-block rankings, which makes use of
assumption 111, has been introduced by Quade (1972. 1979). The idea behind this
method is that blocks in which the observations are more distinct are more likely
to reflect any underlying true ordering of the treatment effects.

To determine the weight for the i-th block, forj=1,...mlet

max .,y ming
D, = L% e & (1.1

7 J
that is D; is the range of the block i. Let Qj = R(Dj), that is O; be the rank of D;

among Dy, ... Dy
Assume:
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