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Abstract

It is known that the designs BG1(n, ¢) in some cases have spreads of maximatcs. Here a
o-arc is a non-empty subset of points that meets every hyperplane in paints. The situation for
designs in general is not so well known. This paper establishes an equivalence between the existence
of a spread of:-arcs in the complement of a Hadamard design and the existence of an affine design
and a symmetric design which is also the complement of a Hadamard design.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

An ¢-arcin a 2-design is a subset of points that meets every block in either @oints.
[7,8].

Rahilly [6] established the equivalence of the existence of an affine design of class number
4 and a Hadamard 2-design possessing a spread of lines of maximum size 3. By observing
that a line of maximum size 3 in a Hadamard design is a 1-arc in the complementary design,
we are able to extend this result and to state it in the language of maximal arcs in designs.
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2. Basic results and definitions

The general design theory used in this paper can be foydd3hor [4]. We shall outline
in this section some definitions, notation and results.

A designD = (2, %, I) consists of a finite point se®, a finite block set#, disjoint
from £ and an incidence relatioh C 2 x 4. Where useful, we shall identify a bloék
with {p € 2 | pI B}; that is with the subset of points d& Note that we do not rule out
repeated blocks.

D is at-(v, k, 1) designif |#| = v, each block is on exactly points and every subset
of t points is contained in exactlyblocks. The parametets r have their usual meanings:
b = |4%| andr, the replication number, is the number of blocks on any point. The number
r — Ais theorderof a 2{(v, k, A) design. Anyt-design is also as-design for any, 1<s <.

The dual desigD* of D is obtained by interchanging the roles of points and blocks in
D. The complemenD of D is defined byD = (2, %, 1), wherel =2 x 4 —1.lf Disa
2-(v, k, /) design therD is a 2{v, v — k, b — 2r + 1) design with the same order Bs

The intersection of all blocks containing two given distinct pointdois called the
line joining the two points. It is well-known that a line in a(2; k, 1) design has at most
(b— A/ — A =1+ (v—1)/k points, with equality if, and only if, each block either
contains the line or meets it in just one point. In the case of equality, the line is said to be
of maximum sizand the line is anaximum line.

A set of non-empty point subsets that partitions the point set of a design is caflesbal

A non-empty subse® of n points of a desigi is called an ¢, n)-arc if it meets every
block in at mostx points. If |B N S| € {0, o} for every blockB of D, thenSis called an
o-arc.

Note that some authors reserve the term arc for a subset of points in a symmetric 2-design
that meets any block in at most two points.

Proposition 1. An (o, n)-arc A in a2-(v, k, A) design satisfies
n<1l+r(e—1)/A

Equality holds if and only ifA is ana-arc.

Proof. See, e.g[7] or[8].

A block is said to be aecantor passanbf ana-arc according as it meets the arcior
0 points.

LetD be a 1¢v, k, r) design. TheD is resolvableif it has aresolutionor parallelismof
its block set into parallel classes, each of which partitions the point d&t Iof this case,
it is easy to see thdd has exactly parallel classes and each parallel classrhas v/k
blocks. We calmtheclass numbeof D. Blocks in the same parallel class pagallel. If the
resolution is such that the intersection of any two non-parallel blocks is a copstaited
theindex thenD is said to beaffine It is straightforward to show that= k/m = k?/v.

A well-known theorem of Bose asserts that in a resolvahle, 25 1) designD we have
A= (k — 1)/(m — 1), with equality if and only ifD is affine. The parameters &f in the
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affine case can be expressed entirely in termsafidmas follows:v = um?, k = um, A=
(um —1)/(m — 1), r = (um? — 1)/ (m — 1) andb = rm.

A 2-(v, k, ) designD is symmetridf b = v. It is well-known thatD is symmetric if and
only if its dual designD* is also a 2¢v, k, A) design.

A Hadamard2-desigris a symmetric 2w, k, A) design withv=41+3 andk=24+1. Such
a design exists if and only if there exists a Hadamard matrix of argldr. A complementary
Hadamard2-design is the complement of a Hadamard 2-design; so its parameters are of the
form 2-(4/ + 3,24+ 2, A+ 1). The Hadamard conjecture asserts that a Hadamard matrix
of ordern exists if and only ifs = 2 ornis divisible by 4.

Given a Hadamard 24/ + 3, 24 + 1, 4) designD, introduce a new poinb and adjoin
it to each block ofD. These extended blocks and their complements give an affine 3-
(42 + 4,27 + 2, 2) design. Any affine 2-design of class number 2 is in fact a 3-design
obtained in this way from some (not necessarily unique) Hadamard 2-design.

The preceding discussion relating Hadamard matrices to particular classes of symmetric
designs and affine designs of class number 2 is well-known. The idea has roots in a paper
of Bose[2]. However, Rahilly[6] showed that there is a connection between Hadamard
2-designs and affine designs of class number 4.

Proposition 2 (Rahilly [6]). There exists an affin2-(16u, 4u, (4 — 1)/3) design if and
only if there exists a Hadama@t(16u — 1, 8u — 1, 4u — 1) design with a spread of lings
all of maximum siz8.

In this paper, we shall extend Rahilly’s result to affine designs of class numlveliere
m >=4. To this end we extend the concept of lines of maximum size. One might think that
this means considering, for example, plane spreads but it turns out that considering spreads
of a-arcs in complements of Hadamard 2-designs leads more naturally to a generalization
of Rabhilly’s theorem.

Rahilly’s results on line spreads were for symmetric designs. We shall consider the more
general theory of spreads efarcs in the wider setting of 2-designs, which need not be
symmetric.

3. Spreads andx-arcs

Firstin this section, it will be shown that a line in a des@may be viewed as amarc
in the complementary desigb.

Lemmg3. Let D be a2-(v, k, A) designk > 3. Then a subset of points of D is a maximum
line in D if and only if it is ana-arc in D withoa =r/(r — A).

Proof. LetAbe anx-arcinD, wherex =r/(r — A). By definition,|A|=1+r(e—1)/A=
1+ r/(r — 4). Therefore/A| >2 and so any block db meetsAin 0 orr/(r — 1) points;
hence any block oD either containg\ or meetsA in exactly one point. Each of the blocks
that contains two distinct points @& must therefore contain all &k and hence the line
joining the two points. From the previous section, we know that a maximum lifetuis
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exactly 14 (v — 1) /(v — k) points, which is easily shown to equdl| using the basic design
parameter relations.

HenceAs a line inD. The converse is straightforward.

If Ais ana-arc of D, thenD,4 denotes thenduced desigmefined on the points oA,
whose blocks are the secants®ofvith induced incidence. Thus a sec8inhducesa block
of D4 whose points are those afn B. ClearlyD 4 is a 1{a, «, r) design, wher¢A|=a and
r is the replication number dd. The following lemma is essentially {i8] but we include
the proof for completeness.

Lemma 4. Let A be arx-arc in a2-(v, k, 4) designD. Then

(@) Dy isa2-(a, o, A) designwherea = |A|=1+r(a—1)/2,

(b) A has exactlya/o secants an@ — ra/o passants

(c) any point not in A is on exactlju /o secants and — la/o passants
(d) the passants of A form am — A)/a-arc in D*.

Proof. Condition (a) is straightforward. Moreover, fér, the parameterg™and ‘b’ are,
respectively, the replication numbenf D and the number of secants Af The standard
equation bk = vr’ then gives (b).

To prove (c) letp be a point not irA andN the number of secants gn Counting in two
ways the number of flagg, B), whereB is a secant op andg € A N B, givesa/ = Na.
Finally, (d) follows easily from (c). O

Next, we consider the number of common secants and passants of two disjoint arcs.

Lemma 5. Let A; be ang;-arc and|A;| = q; fori =1, 2, whereA; N Ao = @. Then the
number of secants commomd@andAz is Aaiaz /o102 and the number of common passants
isb — (ar02 + axon — Aaiaz) /oo,

Proof. Let x be the number of common secants. Counting in two ways the number of
ordered tripleg p1, p2, B), wherep; € A; andB is a block containing; (i =1, 2), gives
ai1azA = xoq02. The rest is straightforward using this result and Lemmal4.

Remark 6. Rahilly [6] defines a spread of maximum lines tourgformif the number of

blocks containing any two lines of the spread is constant. He then proves that every spread
of maximum lines in a Hadamard 2-design is uniform. However, this is true for all 2-designs
as can easily be deduced from Lemmas 3 and 5.

Themth multipledesign of a design is obtained by repeating each of its blodkses.

The case when the induced design orxaarc is a multiple of a symmetric design is
of special interest. LdD be a 2¢v, k, ) design with arw-arc A ThenD, is a 2{a, o, 4)
design, wherea = 1 + r (o — 1)/ and the replication number @ 4 isr, that ofD. Hence
if D4 is a multiple of a symmetric design, then it is thg'«)th multiple of a symmetric
2-(a, o, /') design denoted byD 4], where' = /a/r. In this case we shall say thatis a
symmetricx-arc.
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A set ofx-arcsthat partitions the point set &f will be called anx-spread If all the a-arcs
in the spread are symmetric, it is calledyanmetricx-spread

In view of Lemma 3, every/(r — A)-spread inD is a line spread irD in the sense of
Rahilly [6]: that is a partition of the point set by maximum lines. We shall show that in the
casex =r/(r — 4), all a-arcs andr-spreads are symmetric.

Lemma 7. Every[r/(r — A)]-arc in a2-(v, k, A) design is symmetric and is a maximum
line in the complementary design

Proof. First note that i is a point of a maximum line of a 2, k, A) design, the number
of blocks containing but not the whole line i — 4, the order of the design.

Now supposé\is anc-arc of a 2¢v, k, 1) designD, wherex=r/(r — A). Then|A| =1+«
andD, is a 2{(a + 1, o, o — 1) design. By Lemma 3A is a maximum line inD. Therefore,
given a point ofA, the number of blocks ob meetingA only at that point is the order of
D, which is the same as the order- /. = r/o of D. Hence each block ab, is repeated
r/otimes and s@\ is a symmetria-arc. [

Theorem. There exists an affin®-(um?, um, (um — 1)/(m — 1)) design and a comple-
mentary Hadamar@-(m — 1, %m %m) design if and only if there exists a complementary
Hadamard2-(um? — 1, 3um?, 3 um?) design with a symmetrigm-spread.

Proof. First assume there exists an affin&@s2, um, (um — 1)/(m — 1)) designl” and a
2-(m — 1, 3m, 3m) design.

Choose a point of I'. Then on the remainingm? — 1 points ofI" define a desigil
whose blocks are obtained thus. For each parallel €asfsI, identify them — 1 blocks
of C not onw with the points of4. Then the union of th%m blocks ofI" corresponding to
a block of4 is defined to be a block dfl.

HencelT hasum? — 1 points angun x %m = %umz points on each block. To evaluate the
replication number ofl, letx be any of its points. There are - ' = um parallel classes
of C of I' such thak andw are on different blocks frort.

The block ofC on x, considered as a point df, is in %m blocks ofI1. Hencexis on %m
blocks of IT induced byC. Therefore, in totalx is on (3m) x (um) = 3um? blocks of IT.
It follows thatIT is a symmetric design since = k.

Now consider two distinct blockX andY of I1. If they are induced by the same parallel
classC of I', then from the parameters dfit follows thatX andY have%m blocks ofCin
common and therefore meet(gm) x (um) = 2 um? points of I1.

Suppose on the other hand, tha@andY are induced by different parallel classeslof
SinceX andY each consists O%m blocks of I' and non-parallel blocks of meet inu
points, it follows thatX andY meet in exactly x (3m)? = 3um? points ofI1.

Hence the dual off is a symmetric 2-design. Therefafkand its dualT* are symmetric
2-designs with parameters(@m? — 1, 3 um, 3um).

Next, we show thafl* has a symmetri%m spread. LeC be any parallel class df and
x any point oflI. Let X be the block ofC onx. If alsow is onX, then no block of T induced
by C containsx. Otherwise the number of blocks &induced byC is the number of blocks
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containingX (considered as a point af) which is therefore the replication numb%m of
A. Hence then — 1 blocks ofIT induced byC form ana-arc in IT*, whereo = %m We
show this arc is symmetric, noting here thak = m?/3m = pm.

In the case whenris on %m blocks ofI1 (induced byC), all the um points ofX are on the
same%m blocks. This shows that the — 1 blocks induced b form a symmetrk%m—arc
in IT*.

Clearly, by varyingC over all parallel classes df, we obtain a symmetriém—spread in
IT*.

Conversely, assume the existence of @? — 1, 3um?, %um?) designD with a sym-
metric %m—spreadz. LetA € 2. ThenAis a symmetric%m—arc. Further, by Lemma 4,
|A|=m —1,Ahasum(m — 1) secants andm — 1 passants. Sinceis a symmetriczlm-arc
it follows easily thatD 4 is a symmetric 2m — 1, 2m, 2m) design.

Define a desigi” as follows. The points of are those oD* and a new point, labelled
w. The blocks ofl" are of two types. Type 1 blocks are labelleth, A € ~. Hence there
are(um? — 1)/(m — 1) blocks of Type 1.

Type 2 blocks of” are labelled A, ¢), whereA € X andeis any block off D4]. Hence
since|X| = (um® — 1)/(m — 1) and eacliD,] hasm — 1 blocks, it follows that there are
wm? — 1 blocks of Type 2. ThereforE has exactlyn (um? — 1)/(m — 1) blocks.

Finally to complete the definition df, we define incidence if.

() If A € 2, then(A) is incident withw and with all the passants &fin D: they are
points of D* and therefore of . By Lemma 4,(A) is on exactly 1+ (um — 1) = wm points.

(i) Let (A, e) be a Type 2 block as defined above. Each bok[ D 4] is the intersection
with A of any one ofwm secants oA in D, sinceA is symmetric; so that each block 04
is repeatedr/o’ times. (Herer = %,umz ando = %m.) Theseum secants as points @*
are defined to be incident witi\, e) in I".

Hencel” hasum? points, withum points on each block. Next, we shdwis a 2-design.
Consider two distinct pointX andY of I'. There are two cases.

Casel: Y = w. Then only Type 1 blocks contaiXandY and the number of such blocks
is the numbep of A € X for whichY is a passant iD. SinceX partitions the points ob
andY is a secant teum?2 — 1) /(m — 1) — p of the%m—arcs inX, then(um? —1)/(m — 1) —

p = (zum?)/(3m) = um, whencep = (um — 1)/ (m — 1).

Case2: NeitherX norYis w. Let = be the number oA € X such thaiX andY are both
passants oA in D. Then exactlys = (um? — 1)/(m — 1) — 2p + n of the arcsA € X are
such thaX andY are both secants & Furthermorer is the number of Type 1 blocks of
I' containing bothX andY.

Let T be the number of Type 2 blocks &f containingX andY. We need to evaluate
7 + 1. First observe thaX andY are both secants to exactthyof the arcs in>. That is they
induce the same block inof the symmetric 2 — 1, %m %m) designg D41, and induce
different blocks in ther — 7 remaining[D 4], whereA € X andX, Y are both secants of
A. That is, forz of the arcsA € X, the blocksA N X andA N'Y of [D4] are equal, so that
JANXNY|=|ANX|= 2m; while for ¢ —  of the arcsA N X andA N'Y meet inim
points, sothafAN X NY| = %m. For the remainingd € X, eitherX orY is a passant, so
thatANXNY = ¢.
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Since from the parameters of the symmetric deBigve havg X NY |= %ymz, it follows
thatZum? = $mt + 3m(c — 1), whenceum = ¢ + 1. Substituting fors andp we obtain
T4 T=(um —1)/(m — 1) = p.

It follows that I is a 2{um?, um, (um — 1)/(m — 1)) design. A straightforward check
will verify that I' is resolvable: a typical parallel class is given by edch 2 and consists
of the block(A) together with then — 1 blocks(A, e), whereeis any of then — 1 blocks
of [D4]. Hence from Bose’s theorem (see Section 1) it follows fhat affine. [

As a corollary we can readily obtain the proposition due to Raféllgtated earlier. Since
a 243, 2, 1) design always exists, then far=4 the above theorem states that the existence
of an affine 2¢16u, 4u, %(4ﬂ— 1)) design is equivalent to the existence of a complementary
Hadamard 2<06u — 1, 8y, 4u) design with a symmetric 2-spread. Now apply Lemma 3.
Aninteresting case i =4, u=7. Then the theorem implies that the existence of an affine
2-(112 28, 9) design is equivalent to the existence of a Hadama¢tl1?; 55, 27) design
with a spread of lines, all of size 3. The existence of such an affine design is undecided.
According to Tonchey, it is the smallest undecided affine 2-design: on the other hand, there
exist Hadamard designs on 111 points but it is not known whether any of them have spreads.
Examples of spreads afarcs are to be found in the designs,RP&n, ¢) of the points
and hyperplanes in P@, ¢). If r + 1 dividesn + 1, then PG_1(n, ¢) contains a spread
of t-dimensional subspaces which in the complementary design is a symgiespcead.
See, e.g[3].
Jungnickel and Toncheg®] showed that there exist symmetric designs with the param-
eters of, but not isomorphic to RGi1(n, ¢), namely GMW designs, possessing spreads of
o-arcs.
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