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Some Properties of Copper — Aluminium Cu-Al
At Different % Of Al
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ABSTRACT. The decomposition of elastic compliance lensor nto ies irreducible
parts is given. The norm concept of elastic compliance tensor and its irreducible
party and their ratios are used 1o study the anisotropy of copper — aluminium at
different % of Al and the relationship of their structural properties and other
propertics with their anisotropy are grven.
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Elastic Compliance Tensor Decomposition
The constilutive relation characterizing incar anisotropic solids is the generalized Hook's
law | 1]:

O-J - Cr';'UEH . Er';' - SUH'O-“ ? "

Where ¢, and €, arc the symmetric second rank stress and strain tensors, respectively,
(.:;-H 15 Lhe Tourth-rank elastic stiffness tensor (elastic constant tensor) and SU-,‘.', is the
clastic compliance tensor.
There are three index synunetry restrictions on these tensors. These conditions are:
= = — . 9
SU‘J“, - S_J”Af . LS'ULI SU“\ N Lgf_,h(!‘ LS'L[U " (‘.J

Where the [irst equality comes from the syminelry of stress tensor, the second one [tom Lhe
symmetry of strain tensor, and the third one is due (o the presence of a deformation
potential. In gencral, a fourth-rank iensor has 81 elements. The index syminelry conditions
(2) reduce this number to 21, Consequently, for most asymmetric materials {triclinic
symmetry) the elastic constant tensor has 21 independent components.
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Elastic constant tensor C’.N possesses the same symmetry properties as the elastic
constant tensor S:‘;M and their connection is given by ;

CinrS st = (5 5, +0,0, ) Where d,; 1s the Kronecker delta 3

e m n JHH
The Einstein summation convention over repealed indices is used and indices run from | o
3 unless otherwisc stated.
Schouten [3] has shown that CUH can be decomposed into (wo scalars, two deviators, and
ONe-NONOT PArts.

By applying the symmetry conditions (2} to the decomposition resulls obtained for a
general fourth-rank tensor, the following reduction spectrum for the elastic compliance
lensor is ohtained. It contains two scalars, two deviators, and one-nonor parts [4, 5, and 6]:

_eflom (0:2) : (2:2) {4 1) -
Siu = Suu + Sgu + 5: Y '+ S S0 (4)
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| :
‘Sf{ri.’l - (S:_;JJ + Sf&ﬂ' + S:.{,IA ) 21 [5:1 (‘Sk!pp +2 Rpi’p)—i_ 5 ( ﬂpp + 2S|;p.’p)

£ 0[S 1 + 28 0, 4 8,08, + 28, )+ 6, (Si, + 25,0, )
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|
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These parts are orthonormal to cach other. Using Voigt’s notution [1] C:;'u and Sf- 4, - can he

and §

expressed in 6 hy 6 reduced matrix notation, where the matrix coelficients ¢ 1 i 4

connected with the tensor components Cr’;’“ and SW respectively hy the recalculation

rules:

Cipt =€ (e pu=1...06kieA=1..6);
That 1s:

11,2262, 3303, 23=3264,31=135,12=216;
And

— . T g
S,-J“ =5,, Whenmandnare 1, 2or3,

QSU“ =5  Whencithermorn arc 4, 5or 6,

i

45:’;’“ =5  When both m and n are 4. 5 or 6.

M

The Norm Concept

Generalizing the concepl of the modulus of a vector, norm ol a Cartesian lensor (or the
modulus of a tensor) is deflined as the square root of the contracted product over all indices
wilh itsell:

= HT\\ { Tt Tt }uz

Denoting rank-n Cartesian 7, . hy T, . the square of the norm is expressed as [7]:

‘ Zr” ) = Zr”: 7 T{ i)
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This definition is consistent with (he reduction of the wensor in Carntesian formulation when
all the irreducible parts are emhedded in the original rank-n tcnsor space.

Since the norm ol a Cartesian (ensor is an invariant quantily. we suggest the following:

Rulel. The norm of a Cartesian tensor may be used as a criterion lor representing and
comparing Lhe overall effect of a certain property of the same or different symmetry. The
larger tbe norm value, the more cftective the property is.

It is known that the anisotropy of the malerials, i.e., the symmetry group of the material
and the anisotropy of the measurced property depicted in the same malerials may be quite
differeni. Obviously, the property. tensor musl show, at least, the symmelry of the material.
Far exaimplc. a property, which is measured in a malerial, can almost be isotropic but the
material symmetry group itself may have very few symmetry clements. We know that, for
1sotropic malerials, the clastic compliance tensor has two irreducible parts. i.c.. (wo scalar
parts, so the norm of the elastic compliance tensor for isotropic materials depends only on

the norm of the scalar parts, 1.e. N = N | Hence. the rutioc —= =1 for isotropic materials.
For anisotropic materials. the elasiic constant tensor additionally contains two deviator
parts and one nonor part. so we can define —L for the deviator irreducible parts and —~

for nonor purts. Generalizing this (o irreductble tensors up to rank lour, we can define the

following norm ratios: —= for scalur parts, —=[lor vector parls. for deviator parts,

for septor parts, and —=% for nonor parts. Norny ratios of different irreducible parts

represent the anisotropy ol that particular irreducible part, they can also be used (o asses
the anisotropy degree ol a malerial property as & whole. We suggest the following two
more rules:

Rule 2. When N is dominating among norms of irreducible parts: the closer the norm

N,

ralio ~— is to one, the closer the material property is isolropic.

Rule3. When N 1s not dominating or not present. norms of the other irreducible parts can
be used as a criterion. But in this case the situation is reverse; the larger the
norm ratio value we have, the more anisotropic the material property is.

The square of the norm of the elastic compliance lensor §

fHif

INF =3 (s + L8 T +23 sk s )+ Z(Sf,;; Teylshy

R nn LN nin HHt

+7Z( SIS )4 Z(S,{,j;”): (10

NN Hn

Let us consider the irreductble decompositions of the elastic compliance tensor in the
following crystals.
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Table 1. Elastic Compliance (TPa )™ i8]

77

Llenment, Cubic System 5| 5o $44
Copper, Cu 15.00 -6.30 13.30
Aluminium, Al 16.00 -5.80 353
Table 2, Elastic Compliance (TPa )_l (%]
Alluy, Cubic System
Copper Aluminium. Cu-Al, 81 AT 514
At % Al
0.04 14.87 -6.23 1321
.20 14,99 -6.28 13.21
.75 14.99 -6.28 13.14
[.00 15.06 -6.32 13.19
1.95 15.08 -6.33 1316
214 15.08 -6.33 13,12
2.2 15.21 -6.3Y 13. 14
30 15.34 -6.45 13.12
4.00 1553 -6.55 13.07
481 15.90 -6.73 13.35
485 15.56 -6.56 13.04
5.00 15.63 -639 13.06
6.50 1586 6.71 12.97
7.0 1597 -6.760 12,09
7.50 15.90 -6.72 1292
840 16.22 -6.8% 12.90
9.00 [6.55 7.05 1275
4.86 16.70 -7 1282
14,22 16.69 -7 12.82
H{3.HO 16.86 =714 1281
.77 17.13 -71.32 1276
[2.55 17.41 -7.46 12.67
1325 17.62 -7.56 12.69
14.00 1812 -7.78 12,45

By using table | and table 2, and the decomposition of the clastic compliance tensor. we

calculated the norms and the norm tatios as in table 3 and in table 4.
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Table 3, the norms and norm ratios
Element N, JLL N, N N IN N, IN N, IN
Copper. Cu 46.5696 J 0 23803 52.568 08916 0 (0.4528
Aluminium, Al 723853 0 06.743 72.699 0.9957 0 0.0928
| I
Table 4, the norms and notm ratios

rAHny. Cubic System _} [
Copper Alumiuiom, | ¥ N N, N NIN N, IN NN
Cu- Al at % Al

r—(].(H 46.4703 0 23352 52.[)98—_‘( 0.8920) 0 (),452]
0.20 16.7254 0 23,824 52.450 1.R909 0 0.4543
75 46.64H) 0 J 23RBS 52 416 0.4901 ] {),455TJ
1.00 16.8669 0 24,023 32.663 (1.8499 0 0).4561
1.95 46871 1] 24.096 52.70% H_HS‘\)U 0 {1.4572
2.14 F46.H333 0 24128 52,683 (1.EKO() 8] ().4580
2.21 47,142 JF (} 24.421 53.000) (8879 0 [)_-1{‘1()()4
30 47.4023 0 34.746JL 53473 {1 ¥BOS 0 0.4628
4.00 17,7792 0 25.258 54.044 (1.E841 8] 14673
4.1 489157 0 25924 55.361 (L8836 0 (. 4683
485 47 K059 0 25347 54010 ().K835 1] (.4684 J
5.00 47.9783 0 25,493 54331 (18831 J 0 0.4692
6.50 48.4000 0 26135 55005 (KT 0 04751
T.05 1K.6621 O 26.379 55.352 (.8791 1 04766
7.50 484197 0 26.257 35 0K (1.8791 { 04767
#.40 N 491148 0 27053 56073 (1.K75Y 0 (L4825
g () 49.6935 {} 27.987 57.033 08713 0 0.4907
9.K6 500874 0 28.272 37516 08709 0 04915
10,22 500720 0 28.255 57494 08709 1] 04914
180 50,4349 {} 25670 8014 D.85694 t) (4942
VT 509773 1] 29,360 58828 (.B66O 0 0.4991
1255 51.5(43 4] A6 59.663 (LH633 0 01,5045
13.25 I 51.9906 0 30603 6.32Y 08614 0 {5073

L i4.00 LSZ,HU(IH 0 3964 61,724 {18554 ] 05179
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Conclusion

From table (3), considering the ratio f\ we can say that Copper, (first ionization
N

energy is 745KJ/mole) is more anisotropic than Aluminium, (first ionization
energy is 577.9Ki/mole), and considering the value of N which is more bigh in
the case of Aluminium, so we can say (that Aluminium clastically is stronger than
Copper.

From table (4) considering the ratic N we can say that in the Alloy Cu-Al as the

N
percentage of Al increases the anisotropy ol the alloy increases, and considering
the valuc of N which is increasing as the percentage ol Al increases, so we can say
that the alloy becomes elastically strongest.
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